Anti-inflammatory effects of fentanyl and morphine on LPS-induced TLR4 neuroinflammatory signaling


  • Leandra Figueroa-Hall OSU-COM
  • Craig Stevens OSU-COM
  • Davis Randall OSU-COM


opioids, neuroinflammation, TLR4, LPS, fentanyl, morphine


Opioid receptors located in the central nervous system and periphery are activated by opioids, which are classified as analgesics and non-analgesics. While investigations show opioids may have more severe consequences on inflammation and neuroinflammation due to down-regulation of cellular functions, these findings remain debatable. With these controversial implications at the forefront, we chose to investigate the fentanyl- and morphine-mediated effects on LPS-induced TLR4 neuroinflammatory signaling. CHME-5 microglial cells treated with LPS induced mu opioid receptor gene expression. Co-treatment with LPS and fentanyl or morphine significantly decreased LPS-induced IκBα activation, while only fentanyl decreased NF-κB binding activity. Furthermore, treatment with naltrexone did not reverse the fentanyl-mediated down-regulation of NF-κB binding activity. These findings indicate that fentanyl, and to a lesser extent morphine, display anti-inflammatory effects on LPS-induced TLR4 signaling.



Fine P, Portenoy RK. Opioid Drugs: Overview of Clinical Pharmacology. New York: McGraw Hill; 2004.

Leavitt SB. Opioid Antagonists, Naloxone & Naltrexone- Aids for Pain Management: An Overview of Clinical Evidence. Pain Innovations. 2009:1-16.

Davis MP. Fentanyl for breakthrough pain: a systematic review. Expert review of neurotherapeutics. 2011;11(8):1197-1216.

Chou R, Turner JA, Devine EB, et al. The effectiveness and risks of long-term opioid therapy for chronic pain: A systematic review for a national institutes of health pathways to prevention workshop. Annals of Internal Medicine. 2015;162(4):276-286.

Volkow ND, McLellan TA. Curtailing diversion and abuse of opioid analgesics without jeopardizing pain treatment. JAMA. 2011;305(13):1346-1347.

Feng Y, He X, Yang Y, Chao D, Lazarus LH, Xia Y. Current research on opioid receptor function. Current drug targets. 2012;13(2):230-246.

Ordaz-Sanchez I, Weber RJ, Rice KC, et al. Chemotaxis of human and rat leukocytes by the delta-selective non-peptidic opioid SNC 80. Revista latinoamericana de microbiologia. 2003;45(1-2):16-23.

Vallejo R, de Leon-Casasola O, Benyamin R. Opioid therapy and immunosuppression: a review. American journal of therapeutics. 2004;11(5):354-365.

Quaglio GL, Lugoboni F, Pajusco B, et al. Hepatitis C virus infection: prevalence, predictor variables and prevention opportunities among drug users in Italy. Journal of viral hepatitis. 2003;10(5):394-400.

Ninkovic J, Roy S. Role of the mu-opioid receptor in opioid modulation of immune function. Amino acids. 2013;45(1):9-24.

Roy S, Wang J, Kelschenbach J, Koodie L, Martin J. Modulation of immune function by morphine: implications for susceptibility to infection. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology. 2006;1(1):77-89.

Perez-Castrillon JL, Perez-Arellano JL, Garcia-Palomo JD, Jimenez-Lopez A, De Castro S. Opioids depress in vitro human monocyte chemotaxis. Immunopharmacology. 1992;23(1):57-61.

Gessi S, Borea PA, Bencivenni S, Fazzi D, Varani K, Merighi S. The activation of mu-opioid receptor potentiates LPS-induced NF-kB promoting an inflammatory phenotype in microglia. FEBS letters. 2016;590(17):2813-2826.

Wang X, Loram LC, Ramos K, et al. Morphine activates neuroinflammation in a manner parallel to endotoxin. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(16):6325-6330.

Hutchinson MR, Zhang Y, Shridhar M, et al. Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain Behav Immun. 2010;24(1):83-95. doi: 10.1016/j.bbi.2009.1008.1004. Epub 2009 Aug 1011.

Roy S, Cain KJ, Chapin RB, Charboneau RG, Barke RA. Morphine modulates NF kappa B activation in macrophages. Biochemical and biophysical research communications. 1998;245(2):392-396.

Davis RL, Das S, Buck DJ, Stevens CW. Beta-funaltrexamine inhibits chemokine (CXCL10) expression in normal human astrocytes. Neurochemistry international. 2013;62(4):478-485.

Stevens, Aravind, Das, Davis. Pharmacological characterization of LPS and opioid interactions at the tollâ€like receptor 4. British journal of pharmacology. 2013;168(6):1421-1429.

Davis RL, Buck DJ, Saffarian N, Stevens CW. The opioid antagonist, beta-funaltrexamine, inhibits chemokine expression in human astroglial cells. J Neuroimmunol. 2007;186(1-2):141-149. Epub 2007 May 2001.

Figueroa-Hall LK, Anderson MB, Das S, Stevens CW, Davis RL. LPS-induced TLR4 neuroinflammatory signaling in CHME-5 microglial cells. Neuroimmunology and Neuroinflammation; Vol 4, No 10 (2017). 2017.

de Tommaso M, Arendt-Nielsen L, Defrin R, Kunz M, Pickering G, Valeriani M. Pain in Neurodegenerative Disease: Current Knowledge and Future Perspectives. Behav Neurol. 2016;2016:7576292.(doi):10.1155/2016/7576292. Epub 7572016 Jun 7576295.

Broen MP, Braaksma MM, Patijn J, Weber WE. Prevalence of pain in Parkinson's disease: a systematic review using the modified QUADAS tool. Mov Disord. 2012;27(4):480-484. doi: 410.1002/mds.24054. Epub 22012 Jan 24059.

Perry VH, Teeling J. Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin Immunopathol. 2013;35(5):601-612. doi: 610.1007/s00281-00013-00382-00288. Epub 02013 Jun 00284.

Chao CC, Hu S, Shark KB, Sheng WS, Gekker G, Peterson PK. Activation of mu opioid receptors inhibits microglial cell chemotaxis. J Pharmacol Exp Ther. 1997;281(2):998-1004.

Horvath RJ, Nutile-McMenemy N, Alkaitis MS, Deleo JA. Differential migration, LPS-induced cytokine, chemokine, and NO expression in immortalized BV-2 and HAPI cell lines and primary microglial cultures. Journal of neurochemistry. 2008;107(2):557-569.

Gessi S, Borea PA, Bencivenni S, Fazzi D, Varani K, Merighi S. The activation of mu-opioid receptor potentiates LPS-induced NF-kB promoting an inflammatory phenotype in microglia. FEBS Lett. 2016;590(17):2813-2826. doi: 2810.1002/1873-3468.12313. Epub 12016 Jul 12328.

El-Hage N, Dever SM, Podhaizer EM, Arnatt CK, Zhang Y, Hauser KF. A novel bivalent HIV-1 entry inhibitor reveals fundamental differences in CCR5-mu-opioid receptor interactions between human astroglia and microglia. AIDS. 2013;27(14):2181-2190. doi: 2110.1097/QAD.2180b2013e3283639804.

Chang SL, Beltran JA, Swarup S. Expression of the mu opioid receptor in the human immunodeficiency virus type 1 transgenic rat model. J Virol. 2007;81(16):8406-8411. Epub 2007 Jun 8406.

Byrne LS, Peng J, Sarkar S, Chang SL. Interleukin-1 beta-induced up-regulation of opioid receptors in the untreated and morphine-desensitized U87 MG human astrocytoma cells. J Neuroinflammation. 2012;9:252.(doi):10.1186/1742-2094-1189-1252.

Langsdorf EF, Mao X, Chang SL. A role for reactive oxygen species in endotoxin-induced elevation of MOR expression in the nervous and immune systems. J Neuroimmunol.

;236(1-2):57-64. doi: 10.1016/j.jneuroim.2011.1005.1009. Epub 2011 Jun 1017.

Perry VH, Teeling J. Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Seminars in immunopathology. 2013;35(5):601-612.

Hutchinson MR, Northcutt AL, Hiranita T, et al. Opioid activation of toll-like receptor 4 contributes to drug reinforcement. J Neurosci. 2012;32(33):11187-11200.

Bachtell R, Hutchinson MR, Wang X, Rice KC, Maier SF, Watkins LR. Targeting the Toll of Drug Abuse: The Translational Potential of Toll-Like Receptor 4. CNS Neurol Disord Drug Targets. 2015;14(6):692-699.






Biomedical Sciences