The Usefulness of Eccentric Hamstring Strength as a Hamstring Injury Predictor: A Critically Appraised Topic

Kira D. Wicker, MAT, LAT, ATC., Rogers State University, Claremore, OK

Jared Spencer, MAT, LAT, ATC., Oral Roberts University, Tulsa, Oklahoma

Jennifer L. Volberding, PhD, LAT, ATC, NREMT, Oklahoma State University Center for Health Sciences, Department of Athletic Training, Tulsa, Oklahoma

Corresponding Author:

Jennifer Volberding Address: 1111 W 17th St Tulsa OK, 74107 Email: Jennifer.volberding @okstate.edu

Running Head: Eccentric Hamstring CAT

Funding: This research did not receive any specific grant funding from agencies in the public, commercial, or not-for-profit sectors **Conflict of Interest:** None Declared

Clinical Scenario: Hamstring injuries are prevalent in sports and there have been many identified risk factors for hamstring injuries. Eccentric hamstring strength as a hamstring injury risk factor has been investigated. *Clinical Question:* Is eccentric hamstring strength an effective predictor of hamstring injuries in athletes? *Summary of Key Findings:* A search was performed on current literature on using eccentric hamstring strength as a predictor for hamstring injury. Three articles met the search criteria and were included in this critically appraised topic. Two studies found no correlation between eccentric hamstring strength and the prevalence of hamstring injuries. One study demonstrated that subjects who could not perform a nordic hamstring exercise beyond 30 degrees were at higher risk for injury. *Clinical Bottom Line:* All the risk factors, not just eccentric hamstring strength, should be combined to identify those that are at risk of hamstring injury. *Strength of Recommendation:* B based on the Strength of Recommendation Taxonomy (SORT) scale.

Clinical Scenario

Hamstring injuries (HSI) represent 39% of reported sports injuries and many HSI are at risk for re-injury.¹ Studies have found that a lack of eccentric hamstring strength, strength that occurs while the muscle is lengthening, can be a factor leading to HSI.² Previous studies have looked at using eccentric hamstring strength training for rehabilitation of HSI and eccentric exercise as an injury prevention technique.^{1,2} One commonly utilized eccentric exercise is the Nordic hamstring exercise (NHE). The NHE has the patient kneeling on a pad with the ankles held in place by a partner or other immovable object. The patient then controls the body forward towards the floor while holding the spine in a neutral position, only extending the body at the knees.³

Clinicians have utilized pre-season physical exams to attempt to identify predispositions to decrease the risk of injury.⁵ These predispositions include non-modifiable and modifiable risk factors. Non-modifiable factors for HSIs, such as age and previous HSIs, and modifiable factors, such as muscular strength, muscle imbalances, and flexibility, can all be examined in these pre-season physicals to determine who might be at risk of HSI.⁵ Identifying the modifiable risk factors can direct training programs and help an athlete to understand interventions that can be implemented to decrease the risk of injury. This critically appraised topic (CAT) examined whether there is a correlation between pre-season eccentric hamstring strength and HSIs and if it can be used as an injury predictor.

Focused Clinical Question

Is eccentric hamstring strength an effective predictor for hamstring injuries in athletes?

Search Strategy

Terms Used to Guide the Search Strategy

- Patient/client group: athletes
- Intervention: eccentric hamstring strength

- Comparison: hamstring injury prevalence
- Outcomes: injury prevention

Sources of Evidence Searched

- PubMed
- Cochrane
- EbscoHost

Inclusion and Exclusion Criteria

Inclusion Criteria

- Studies published since 2017
- Full text available
- Studies that included eccentric hamstring exercise or nordic hamstring exercise measures
- Level 2 or higher evidence based off of the SORT⁷ grading scale and Level 3 or higher on the OCEBM^{6,8} scale.
- Limited to English

Exclusion Criteria

- Systematic reviews
- Meta analyses
- Looked at NHE as an injury prevention technique.
- Studies that provided an injury prevention protocol or intervention

Evidence Quality Assessment

The studies included in this CAT met the inclusion and exclusion criteria. Studies were assessed by the authors (KW, JS) using the Oxford Centre for Evidence-Based Medicine (OCEBM) to assess and rank the quality of the research. Assessment of the included articles can be found in Table 1.

Table 1 Summary of Study Designs and Articles Retrieved

	Van Dyk et.al. ³	Opar et.al. ⁴	Shalaj et.al. ⁵
Study design	Prospective cohort	Prospective cohort	Prospective cohort
	study	study	study
Level of evidence ^{6,7,8}	SORT Level 2	SORT Level 2	SORT Level 2
	OCEBM Level 3	OCEBM Level 3	OCEBM Level 3

Results of Search

Summary of Search, Best Evidence Appraised, and Key Findings

The literature was searched for studies that examined using Nordic Hamstring Exercise (NHE) or eccentric hamstring exercise strength as a predictor for hamstring injuries (HSI) for athletes.

- The initial search yielded 15 studies, but articles that did not investigate eccentric hamstring strength as an injury predictor were excluded.
- The articles that explored NHE as an injury prevention technique were not included.
- All three of the included studies were prospective cohort studies.^{3,4,5}
- Three relevant studies met the inclusion criteria and therefore were included.

Key Findings

Van Dyk et.al.³ and Opar et.al.⁴ found no significant differences with eccentric hamstring strength and the presence of hamstring injuries while Shalaj et.al.⁵ found that the athletes that could not perform a Nordic hamstring strength test beyond 30 degrees had higher association with hamstring injuries. Table 2 reports the findings of each study.

Table 2 Characteristics of Included Studies			
Characteristics	van Dyk et.al. ³	Opar et.al. ⁴	Shalaj et.al. ⁵
Participants	413 male soccer athletes from the Qatar Stars League (QSL) from 2 seasons were included in the study (68.2% of all QSL players). Mean age 25.8+-4.8 years, mean height 177+- 7cm, weight 72.4 +- 9.3kg, BMI 23.1 +- 2. Previous HSI was reported by the athletes.	Members from 6 teams in the Australian football league participated in this study. 311 males totaling 455 player seasons were included 23.7+-3.8 years old, 188.1+-7.6cm tall, and 86.5+-8.8kg.	143 male soccer players from 11 teams of the Kosovo national premier soccer league were included in this study. 7 were goalkeepers, 27 internal defenders, 20 external defenders, 18 central midfielders, 23 external midfielders, 20 wingers, and 28 strikers. Mean age was 23.3+-4.1 years, mass was 74.2+-6.7 kg, height was 180.0+-5.3 cm, and BMI 22.9+-1.7kg m ⁻² . 129 had a dominant right leg, 14 had a dominant left leg.
Intervention	Isokinetic strength:	Athletes in this study	Participants were
investigated	An isokinetic strength: An isokinetic dynamometer was used to test knee flexion and knee extension strength. Athletes perform 5- 10 minutes of a warmup on a stationary bike. The order of which leg was tested first was randomized and maintained. 5 repetitions of concentric knee flexion and extension were performed at 60	did a self-selected warmup, followed by one set of 1-3 maximal repetitions of the NHE. Eccentric knee flexor strength and highest peak force produced during the testing set was collected and then scaled relative to body mass. Limb _{max} was the stronger limb, and Limb _{min} was the weaker limb. Biceps femoris long head (BFlh) was also examined for muscle thickness, pennation	instructed to refrain from strenuous activity 2 days prior to fitness testing. Following a 15 minute warmup of running drills without the ball the players isokinetic torque measurements, sit and reach test (SRT), Nordic hamstring strength test (NHST), and a countermovement jump, speed, and agility tests were

degrees/second, and	angle, and fascial length.	performed. Tests
then followed by 10	The muscle was scanned	were performed one
repetitions at 300	at the halfway site	per day in the above
degrees/second. Last	between the knee joint	mentioned order, the
they did 5	fold and the ischial	only difference was
repetitions of	tuberosity with the	no warmup on the
eccentric knee	athlete prone, after 5	day of the SRT.
extension at 60	minutes of inactivity.	Biodex System 3
degrees/second to	_	was used to find
test hamstring		H:Q ratio.
strength.		H:Q concentric
Dynamic control:		contraction at 60
The specific knee		degrees per second
flexion angle where		was done for 3 reps.
the quadriceps		H:Q concentric at
torque was greater		240 degrees power
than eccentric		second was done for
hamstring torque		5 reps. Hamstring
was calculated. Peak		eccentric
torque (Nm) for		contractions at 30
concentric knee		degrees per second
flexion and		was done for 3 reps.
extension, and for		Hamstrings
eccentric knee		eccentric
extension all at 60		contractions at 120
degrees/second,		degrees per second
defined the dynamic		was done for 4 reps.
control. Concentric		Illinois Agility Test
H:Q ratio and		(IAT) time was
dynamic control		performed and the
ratios were		best time of 3 trials
calculated for 30		was recorded. 3
degrees, 40 degrees,		trials of 20-meter
and 50 degrees.		and 40-meter sprints
Nordic hamstring:		with 5 minutes of
One set of 3		rest were performed.
repetition max		SRT test was
eccentric hamstring		performed once.
eccentric namstring exercise.		NHST was marked
Injury		as "passed" if the
surveillance: Data		subject could hold
		the position beyond
from the previous		• •
QSL seasons was		30 degrees from
collected. Training		starting position.
and match exposure		Countermovement
was recorded.		jump is a vertical

	24 strength		jump test measured
	variables: 11		by a ground reaction
	isokinetic strength, 5		force plate. It was
	NHE, and 8 dynamic		done 3 times with 2
	control variables.		minutes rest between
			and the best jump
			was kept for
			analysis.
Outcome measured	The following	Independent t-tests were	Descriptive statistics
	outcomes were	performed on the data	were used for
	gathered and	and the level of	baseline
	analyzed via	significance was set at P	characteristics,
	independent t-tests	< 0.05.	means, and standard
	to determine if there	An injury report form	deviations.
	was correlation	was filled out for all HSI	Independent t-tests
	between the	that gave information on	compared groups.
			Isokinetic values
	measurements and those athletes that	which limb, injured	
	did or did not sustain	muscle, activity type at	were calculated by
		the time of injury,	dividing absolute
	a HSI.	number of days to fully	toque by body mass.
	Isokinetic strength:	return. The index injury	Effect size was
	Highest peak torque	was their first injury.	calculated as: small
	for each of the three	Injury incidence rate	(0.2-0.3), medium
	above mentioned	was calculated as	(0.5), or large
	tests was recorded	number of injuries per	(>0.8). 95%
	Dynamic control:	1000 player hours in	confidence intervals
	Torque value for	games and trainings.	were used and P-
	concentric	Significance was .05 for	values <=0.05 were
	quadriceps	all tests.	statistically
	contraction was	Ultrasound images were	significant.
	subtracted from the	taken along the	
	eccentric hamstring	longitudinal axis of the	
	contraction, and net	muscle belly at the	
	joint torque was the	halfway point between	
	point where the net	the ischial tuberosity	
	joint torque was	and the knee joint fold.	
	zero.	All were taken prone	
	Nordic hamstring:	after 5 minutes of	
	Max torque was	inactivity. Thickness	
	recorded.	was defined as the	
	Injury	distance between	
	surveillance: Data	superficial and	
	from the previous	intermediate	
	QSL seasons was	aponeurosis. Pennation	
	collected. Training	angle was the angle	
	conceleu. Training	between the	
		oerween me	I

	and match exposure	intermediate	
	was recorded.	aponeurosis and a	
		fascicle of interest.	
Main findings	Of the 413 athletes,	Of the 455 player	31,998 training
	66 people sustained	seasons assessed,	hours and 4,834
	69 hamstring	381(83.7%) did not	hours of match play
	injuries. Three	sustain a HSI and 74	were recorded.
	players sustained 2	(16.3%) did. Primary	Average matches
	injuries. Age	mechanism for injury	competed in were
	(P=.002) and	was high speed running	25.3+-4.0. Average
	position (P=.02)	(46%),	training sessions wa
	were significant	acceleration/deceleration	149.2+-14.3. Mean
	indicators for injury.	(15%), jumping and	match play time was
	Weight (P=.86),	tackling (12%). 82% of	33.8+-8.9 hours and
	height (P=.30), BMI	the injured were BFlh,	training sessions wa
	(P=.33), previous	14% were	223.8+-21.5 hours.
	injury (P=.89), limb	semimembranosus, 4%	43 HSI were
	dominance (P=.39),	in the semitendinosus.	recorded, 16
	and ethnicity	Average time for return	occurred in training
	(P=.16) were not	was 15 days for 88% of	and 27 occurred in
	found to be	cases. 57% of injuries	matches. Injury
	significant risk	were in season, with an	incidence for
	factors for HSI.	average return to play of	training was .50
	Eccentric hamstring	21 days. Prior HSI was	(95% CI) and for
	torque was not	associated with risk, but	match was 5.59
	found to be	other demographics and	(95% CI). No
	statistically	previous ACL injury did	significant
	significant in those	not increase risk. Less	difference for
	that sustained HSI.	relative fascicle length	position and injury
		and large pennation	(p=0.258). 643 total
		angle had greater	days were recorded
		association for HSI.	as lost due to HSI,
		Lesser relative fascicle	431 days from
		length compared to	injuries during
		pennation angle had a	matches. Age was
		higher association with	significantly higher
		HSI. Absolute fascicle	in HSI (p<0.001).
		length and eccentric	Body mass
		knee flexor strength	(p=0.002) and BMI
		imbalance had a	(p=0.002) were
		significant association	higher in injured
		with HSI.	players compared to
			non-injured. There
			was a lower passing
			rate of NHST for the
			injured players

			(p=0.001) and a higher previous HSI (p=0.023). Significantly higher H:Q ratios were found for injured players for their non-dominant legs (p=0.044). No significant differences for the SRT, IAT, countermovement jump, 20-meter and 40-meter dashes. Hamstring torque in injured athletes was significantly lower for both legs compared to non- injured ones for dominant (p=0.039) and non-dominant
Support for PICO?	No	No	(p=0.025). Yes
Level of evidence ⁷	1b	1b	1b
Conclusion	None of the strength variables had significant differences for those that sustained injuries during the season and those that did not. Nordic hamstring exercise had no significant differences for test variables between injured and non- injured limbs. Eccentric hamstring strength is a poor predictor for injury.	Short BFlh fascicle length correlates to increased HSI risk. Eccentric knee flexor strength and between limb differences at the start of preseason did not increase HSI risk. When assessed at multiple time points, a limb difference of >9% did correlate to increased HSI risk. Prior HSI was significantly associated with HSI.	Low passing rate for the nordic hamstring strength testing was found to be a significant factor of hamstring injuries as well as previous HSI. This indicates that eccentric hamstring strength via the NHST might be able to be used as an injury predictor in conjunction with other risk factors.

Results of Evidence Quality Assessment

All articles were graded Level 3. Each article was evaluated using the Strength of Recommendation Taxonomy (SORT) scale and given a Level 2 to all three studies. ^{3,4,5} The included studies had a reasonable number of participants, analyzed full seasons rather than varying time frames, and used t-tests to compare their data which helped when comparing the studies. However, the studies all measured eccentric hamstring strength differently which limits the generalizability of the results. There was inconsistent support between the studies for the PICO making the results and recommendation limited. The overall recommendation for this study is **B** based on the SORT scale.⁷

Clinical Bottom Line

Eccentric hamstring strength should not be used in isolation to try to predict those at risk for hamstring injury but should instead be used as part of a multi-factor analysis. The included studies demonstrated that eccentric hamstring strength has limited pre-season implications compared to the incidence of injuries within a season.

Implications for Practice, Education, and Future Research

There are several factors that may put someone at risk for hamstring injury and these factors should be examined together. Some factors that may cause hamstring injuries include age, previous HSI, quadriceps strength, Q:H ratio, hamstring flexibility, and balance.³⁻⁶ Eccentric hamstring strength can be a component of those examined factors, but only if the correct tools and equipment to measure strength output are utilized. The included studies demonstrated poor consistency and evidence to support using hamstring strength as a predictor for hamstring injury.³⁻⁵ Two studies identified that the above mentioned risk factors would be better at predicting HSI than eccentric hamstring strength.^{3,4} Eccentric exercises such as the NHE, eccentric deadlifts, and slow seated hamstring curl exercise are effective at building strength pre-injury and post-injury, but should be used with caution when using eccentric hamstring strength in identify those at risk for hamstring injury.^{1,2} Strength measurements may be more useful in identifying imbalances that may be utilized to implement preventative exercises, can be included in pre-season protocols to help reduce the incidence of HSI.^{1,2}

Future research could examine other ports populations. The included studies only looked at male soccer or football players, giving them poor generalizability to other sports and female athletes.³⁻⁵ Further research should diversity the sample population to include a more diverse group of sports and include female participants. Future research can also examine different strength measures of other commonly injured muscles to see if identifying strength imbalances is reliable and useful for preventative strength training. Future studies could help provide better conclusiveness about using strength testing as an injury predictor. Eccentric hamstring exercises are an effective injury prevention tool and should be used for injury prevention but are a poor predictor for determining if someone is susceptible to hamstring injury.²⁻⁵

References

- 1. Silvers-Granelli HJ, Cohen M, Espregueira-Mendes J, Mandelbaum B. Hamstring muscle injury in the athlete: state of the art. *J ISAKOS*. 2021;6(3):170-181. doi:10.1136/jisakos-2017-000145
- 2. Jönhagen S, Németh G, Eriksson E. Hamstring injuries in sprinters. The role of concentric and eccentric hamstring muscle strength and flexibility. *Am J Sports Med.* 1994;22(2):262-266. doi:10.1177/036354659402200218
- 3. van Dyk N, Bahr R, Burnett AF, et al. A comprehensive strength testing protocol offers no clinical value in predicting risk of hamstring injury: a prospective cohort study of 413 professional football players. *Br J Sports Med.* 2017;51(23):1695-1702. doi:10.1136/bjsports-2017-097754
- 4. Opar DA, Ruddy JD, Williams MD, et al. Screening Hamstring Injury Risk Factors Multiple Times in a Season Does Not Improve the Identification of Future Injury Risk. *Med Sci Sports Exerc*. 2022;54(2):321-329. doi:10.1249/MSS.00000000002782
- Shalaj I, Gjaka M, Bachl N, Wessner B, Tschan H, Tishukaj F. Potential prognostic factors for hamstring muscle injury in elite male soccer players: A prospective study. *PLoS One*. 2020;15(11):e0241127. doi:10.1371/journal.pone.0241127
- 6. OCEBM levels of evidence. Centre for Evidence-Based Medicine (CEBM), University of Oxford. https://www.cebm.ox.ac.uk/resources/levels-of-evidence/ocebm-levels-of-evidence. Published October 1, 2020. Accessed November 21, 2022.
- Ebell MH, Siwek J, Weiss BD, et al. Strength of recommendation taxonomy (SORT): A patientcentered approach to grading evidence in the medical literature. *Am Fam Physician.x* https://www.aafp.org/pubs/afp/issues/2004/0201/p548.html#strength-of-recommendationtaxonomy--sort-. Published February 1, 2004. Accessed November 21, 2022.
- Howick J, Chalmers I, Glasziou P, et al. Explanation of the 2011 OCEBM levels of evidence. Centre for Evidence-Based Medicine (CEBM), University of Oxford. https://www.cebm.ox.ac.uk/resources/levels-of-evidence/explanation-of-the-2011-ocebm-levelsof-evidence. Published October 1, 2020. Accessed November 21, 2022.